Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.
  • Article
  • Published:

Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia

Abstract

Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. In a wide search for adenosine receptor A2b (Adora2b)-elicited cardioadaptive responses, we identified the circadian rhythm protein period 2 (Per2) as an Adora2b target. Adora2b signaling led to Per2 stabilization during myocardial ischemia, and in this setting, Per2−/− mice had larger infarct sizes compared to wild-type mice and loss of the cardioprotection conferred by ischemic preconditioning. Metabolic studies uncovered a limited ability of ischemic hearts in Per2−/− mice to use carbohydrates for oxygen-efficient glycolysis. This impairment was caused by a failure to stabilize hypoxia-inducible factor-1α (Hif-1α). Moreover, stabilization of Per2 in the heart by exposing mice to intense light resulted in the transcriptional induction of glycolytic enzymes and Per2-dependent cardioprotection from ischemia. Together, these studies identify adenosine-elicited stabilization of Per2 in the control of HIF-dependent cardiac metabolism and ischemia tolerance and implicate Per2 stabilization as a potential new strategy for treating myocardial ischemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consequences of adenosine signaling on Per2 induction.
Figure 2: Influence of transcriptional, translational and post-translational mechanisms on Per2 protein expression.
Figure 3: Functional role of Per2 during myocardial ischemia and ischemic preconditioning.
Figure 4: Consequences of Per2 deficiency on cardiac metabolism during myocardial ischemia and reperfusion.
Figure 5: Hif-1α functions as a link between adenosine-mediated Per2 signaling and metabolism.
Figure 6: Light-induced stabilization of cardiac Per2 expression provides potent protection from myocardial ischemia.

Similar content being viewed by others

References

  1. Eltzschig, H.K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article  CAS  Google Scholar 

  2. Sitkovsky, M.V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22, 657–682 (2004).

    Article  CAS  Google Scholar 

  3. Eltzschig, H.K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  CAS  Google Scholar 

  4. Neubauer, S. The failing heart—an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    Article  Google Scholar 

  5. Aragonés, J., Fraisl, P., Baes, M. & Carmeliet, P. Oxygen sensors at the crossroad of metabolism. Cell Metab. 9, 11–22 (2009).

    Article  Google Scholar 

  6. Thompson, L.F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

    Article  CAS  Google Scholar 

  7. Fredholm, B.B. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 14, 1315–1323 (2007).

    Article  CAS  Google Scholar 

  8. Eckle, T. et al. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111, 2024–2035 (2008).

    Article  CAS  Google Scholar 

  9. Eckle, T., Kohler, D., Lehmann, R., El Kasmi, K. & Eltzschig, H.K. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118, 166–175 (2008).

    Article  CAS  Google Scholar 

  10. Eckle, T. et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115, 1581–1590 (2007).

    Article  CAS  Google Scholar 

  11. Zheng, B. et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173 (1999).

    Article  CAS  Google Scholar 

  12. Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S. & Reppert, S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  Google Scholar 

  13. Gallego, M. & Virshup, D.M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139–148 (2007).

    Article  CAS  Google Scholar 

  14. Wu, J.T., Lin, H.C., Hu, Y.C. & Chien, C.T. Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nat. Cell Biol. 7, 1014–1020 (2005).

    Article  CAS  Google Scholar 

  15. Khoury, J., Ibla, J.C., Neish, A.S. & Colgan, S.P. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J. Clin. Invest. 117, 703–711 (2007).

    Article  CAS  Google Scholar 

  16. Mikus, P. & Zundel, W. COPing with hypoxia. Semin. Cell Dev. Biol. 16, 462–473 (2005).

    Article  CAS  Google Scholar 

  17. Grimaldi, B. et al. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 12, 509–520 (2010).

    Article  CAS  Google Scholar 

  18. Jennings, R.B. & Reimer, K.A. The cell biology of acute myocardial ischemia. Annu. Rev. Med. 42, 225–246 (1991).

    Article  CAS  Google Scholar 

  19. Jaswal, J.S., Keung, W., Wang, W., Ussher, J.R. & Lopaschuk, G.D. Targeting fatty acid and carbohydrate oxidation—a novel therapeutic intervention in the ischemic and failing heart. Biochim. Biophys. Acta 1813, 1333–1350 (2011).

    Article  CAS  Google Scholar 

  20. Finegan, B.A., Lopaschuk, G.D., Coulson, C.S. & Clanachan, A.S. Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts. Circulation 87, 900–908 (1993).

    Article  CAS  Google Scholar 

  21. Lopaschuk, G.D. & Stanley, W.C. Glucose metabolism in the ischemic heart. Circulation 95, 313–315 (1997).

    Article  CAS  Google Scholar 

  22. Semenza, G.L., Roth, P.H., Fang, H.M. & Wang, G.L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).

    CAS  Google Scholar 

  23. Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl. Acad. Sci. USA 103, 105–110 (2006).

    Article  CAS  Google Scholar 

  24. Kong, T., Westerman, K.A., Faigle, M., Eltzschig, H.K. & Colgan, S.P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 20, 2242–2250 (2006).

    Article  CAS  Google Scholar 

  25. Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  26. Bendová, Z. & Sumova, S. Photoperiodic regulation of PER1 and PER2 protein expression in rat peripheral tissues. Physiol. Res. 55, 623–632 (2006).

    Google Scholar 

  27. Wolff, A.A., Rotmensch, H.H., Stanley, W.C. & Ferrari, R. Metabolic approaches to the treatment of ischemic heart disease: the clinicians' perspective. Heart Fail. Rev. 7, 187–203 (2002).

    Article  CAS  Google Scholar 

  28. Schulte, G. & Fredholm, B.B. The G(s)-coupled adenosine A(2B) receptor recruits divergent pathways to regulate ERK1/2 and p38. Exp. Cell Res. 290, 168–176 (2003).

    Article  CAS  Google Scholar 

  29. Petrzilka, S., Taraborrelli, C., Cavadini, G., Fontana, A. & Birchler, T. Clock gene modulation by TNF-α depends on calcium and p38 MAP kinase signaling. J. Biol. Rhythms 24, 283–294 (2009).

    Article  CAS  Google Scholar 

  30. O'Neill, J.S., Maywood, E.S., Chesham, J.E., Takahashi, J.S. & Hastings, M.H. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320, 949–953 (2008).

    Article  CAS  Google Scholar 

  31. Ginty, D.D. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241 (1993).

    Article  CAS  Google Scholar 

  32. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

    Article  CAS  Google Scholar 

  33. Peliciari-Garcia, R.A. et al. Expression of circadian clock and melatonin receptors within cultured rat cardiomyocytes. Chronobiol. Int. 28, 21–30 (2011).

    Article  CAS  Google Scholar 

  34. Zhang, J., Kaasik, K., Blackburn, M.R. & Lee, C.C. Constant darkness is a circadian metabolic signal in mammals. Nature 439, 340–343 (2006).

    Article  CAS  Google Scholar 

  35. Daniels, I.S. et al. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals. J. Biol. Chem. 285, 20716–20723 (2010).

    Article  CAS  Google Scholar 

  36. Muller, J.E. et al. Circadian variation in the frequency of onset of acute myocardial infarction. N. Engl. J. Med. 313, 1315–1322 (1985).

    Article  CAS  Google Scholar 

  37. Suárez-Barrientos, A. et al. Circadian variations of infarct size in acute myocardial infarction. Heart 97, 970–976 (2011).

    Article  Google Scholar 

  38. Reiter, R., Swingen, C., Moore, L., Henry, T.D. & Traverse, J.H. Circadian dependence of infarct size and left ventricular function after ST elevation myocardial infarction. Circ. Res. 110, 105–110 (2012).

    Article  CAS  Google Scholar 

  39. Leibetseder, V. et al. Clock genes display rhythmic expression in human hearts. Chronobiol. Int. 26, 621–636 (2009).

    Article  CAS  Google Scholar 

  40. Roenneberg, T., Kumar, C.J. & Merrow, M. The human circadian clock entrains to sun time. Curr. Biol. 17, R44–R45 (2007).

    Article  CAS  Google Scholar 

  41. Tian, R. & Abel, E.D. Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 103, 2961–2966 (2001).

    Article  CAS  Google Scholar 

  42. Russell, R.R. III et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 114, 495–503 (2004).

    Article  CAS  Google Scholar 

  43. Hyvärinen, J. et al. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J. Biol. Chem. 285, 13646–13657 (2010).

    Article  Google Scholar 

  44. Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705–713 (2008).

    Article  CAS  Google Scholar 

  45. Durgan, D.J. & Young, M.E. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ. Res. 106, 647–658 (2010).

    Article  CAS  Google Scholar 

  46. Rutter, J., Reick, M. & McKnight, S.L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307–331 (2002).

    Article  CAS  Google Scholar 

  47. Albrecht, U. Invited review: regulation of mammalian circadian clock genes. J. Appl. Physiol. 92, 1348–1355 (2002).

    Article  CAS  Google Scholar 

  48. Durgan, D.J. et al. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ. Res. 106, 546–550 (2010).

    Article  CAS  Google Scholar 

  49. Nossuli, T.O. et al. A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am. J. Physiol. Heart Circ. Physiol. 278, H1049–H1055 (2000).

    Article  CAS  Google Scholar 

  50. Virag, J.A. et al. Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2. Am. J. Physiol. Heart Circ. Physiol. 298, H1088–H1095 (2010).

    Article  CAS  Google Scholar 

  51. Wang, C.Y. et al. Increased vascular senescence and impaired endothelial progenitor cell function mediated by mutation of circadian gene Per2. Circulation 118, 2166–2173 (2008).

    Article  CAS  Google Scholar 

  52. Viswambharan, H. et al. Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115, 2188–2195 (2007).

    Article  CAS  Google Scholar 

  53. Zheng, B. et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694 (2001).

    Article  CAS  Google Scholar 

  54. Ryan, H.E. et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res. 60, 4010–4015 (2000).

    CAS  Google Scholar 

  55. Sohal, D.S. et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res. 89, 20–25 (2001).

    Article  CAS  Google Scholar 

  56. Yoo, S.H. et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  Google Scholar 

  57. Eckle, T. et al. Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. Am. J. Physiol. Heart Circ. Physiol. 291, H2533–H2540 (2006).

    Article  CAS  Google Scholar 

  58. Eltzschig, H.K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    Article  CAS  Google Scholar 

  59. Wolska, B.M. & Solaro, R.J. Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am. J. Physiol. 271, H1250–H1255 (1996).

    Article  CAS  Google Scholar 

  60. Walker, L.A., Walker, J.S., Ambler, S.K. & Buttrick, P.M. Stage-specific changes in myofilament protein phosphorylation following myocardial infarction in mice. J. Mol. Cell. Cardiol. 48, 1180–1186 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge S.A. Eltzschig (Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA) for artwork during manuscript preparation, A. Medway (Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA), K. Hoffmann, J. Macas and C. Zachskorn (Institute of Neurology (Edinger Institute), University of Frankfurt, Frankfurt, Germany) and M. Bonney (Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA) for technical assistance and C.-C. Lee (Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, USA) for providing the Per1−/− mice. The present research work is supported by National Heart, Lung and Blood Institute grants R01-HL092188, R01-DK083385 and R01-HL098294 to H.K.E., R01-HL060569 to S.P.C. and 1K08HL102267 to T.E., Foundation for Anesthesia Education and Research grants to T.E. and H.K.E., an American Heart Association grant to T.E. and a Crohn's and Colitis Foundation of America grant to H.K.E.

Author information

Authors and Affiliations

Authors

Contributions

T.E. designed and supervised the study, wrote the manuscript and did mouse surgery. K.H. did western blots, RT-PCRs and siRNA knockdown studies. S.B. did western blots, coimmunoprecipitation, promoter studies, ELISAs and animal experiments. S.R. did western blots, RT-PCRs, ELISAs and mouse experiments. M.M. did immunohistochemistry and electron microscopy. L.A.W. isolated mouse myocytes and supervised the study. B.D.L. provided human heart samples. J.H., C.H.B. and D.J.K. did metabolic analysis. P.M.B., S.P.C. and H.K.E. supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Tobias Eckle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19, Supplementary Tables 1–7 and Supplementary Methods (PDF 3456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckle, T., Hartmann, K., Bonney, S. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 18, 774–782 (2012). https://doi.org/10.1038/nm.2728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing